منابع مشابه
3D Molding of Veneers by Mechanical Means
The 3D moldability of veneers, as opposed to the moldability of plastic or other materials, is limited because of the characteristics of wood. By mechanical treatment under appropriate conditions, it is possible to partially modify veneer characteristics. In this study, the intention was to determine the effect of factors influencing the 3D moldability of veneers. Therefore, this study was focu...
متن کامل3D Molding of Veneers by Mechanical and Pneumatic Methods
This paper deals with the influence of selected methods (mechanical and pneumatic) as well as various factors (wood species, moisture content, veneer shape, punch diameter, laminating foil thickness, holding method, plasticizing) on 3D molding of veneers. 3D molding was evaluated on the basis of maximum deflection of birch and beech veneers. Cracks and warping edges were also evaluated in selec...
متن کامل3D-Molding of Microfluidic Devices
Multilayer elastomeric device fabrication by replication molding requires a method for bonding together layers. In our development of solvent-resistant microfluidics, the goal with each promising new material or coating was to fabricate multilayer chips to evaluate crossed-channel valve performance and ultimately to implement functional elastomeric devices. However, determining a reliable adhes...
متن کاملFabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning.
This paper describes the fabrication of arrays of nanostructures (rings, crescents, counterfacing split rings, cylinders, coaxial cylinders, and other structures) by a four-step process: (i) molding an array of epoxy posts by soft lithography, (ii) depositing thin films on the posts, (iii) embedding the posts in epoxy, and (iv) sectioning in a plane parallel to the plane defined by the array of...
متن کاملLow cost integration of 3D-electrodes via replica molding
We demonstrate a new replica molding method for integrating 3D-composite electrodes into microfluidic devices made from polydimehtylsiloxane (PDMS) at low cost. Our process does not require work in a cleanroom, expensive materials, or expensive equipment once a micro mold has been fabricated using standard multilayer SU-8 photolithography. Different device geometries have been fabricated to dem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BioResources
سال: 2014
ISSN: 1930-2126
DOI: 10.15376/biores.10.1.412-422